2nd Line Treatments for Dravet

Eric BJ Ségal, MD
Northeast Regional Epilepsy Group
Disclosures

- Accepted honoraria from Greenwich Pharmaceuticals, Zogenix, Eisai, Lundbeck, Lineagen.
Overview

Evidence of....
- State of the science of therapies
- Consensus Guidelines
- Pharmacologic therapies
- Non-pharmacologic therapies
- The best is yet to come?
Reading through the literature

PICK A BOX!

systematic review randomized trial Cohort Study Case Series Mechanistic reasoning
The Literature

- **Level 1** – Systematic review of randomized control trials (RCT) or individual RCT with narrow confidence interval.
- **Level 2** – Systematic review of cohort studies or individual cohort study (including low-quality RCT).
- **Level 3** – Case control studies, outcomes research
- **Level 4** – Case-series
- **Level 5** – Expert opinion

CAVEAT: *LIKELY BEST EVIDENCE IS NOT DEFINITIVE! ‘LOWER LEVEL EVIDENCE MAY PROVIDE STRONGER EVIDENCE THAN ‘HIGHER LEVEL STUDY’ (CASE SERIES WITH DRAMATIC EFFECT VS. SR WITH INCONCLUSIVE RESULTS).*
Table 1: Second-line medications in Dravet Syndrome

<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Level of evidence</th>
<th>AED</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiripentol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Chiron et al., 2000¹⁹ | Randomized, placebo-controlled | 2 | STP (added to VPA/CLB) | France: 41 patients; 20 placebo, 21 STP
9 on STP were seizure-free during 2nd month
Overall 69% reduction in seizures from baseline compared to 7% increase on placebo
Odds ratio of responding to STP compared to placebo 32 ($\text{CI}_{95\%} = 6.2, 161$) |
| Inoue et al., 2015¹⁵ | Retrospective | 4 | STP | 13/24 (54%) achieved a $>$50% reduction in GTCS; 2 were seizure-free |
| Wirrell et al., 2013²¹ | Retrospective | 4 | STP | 82 patients: most children experienced reduction in seizures independent of whether added to VPA or CLB |
| Kassai et al., 2008⁸ | Meta-analysis of STP | 1 | | 64 children in 2 randomized control trials; odds ratio of responding to STP relative to placebo was 32 ($\text{CI}_{95\%} = 6.2, 161$), and stiripentol reduced seizures by 70% ($\text{CI}_{95\%} = 93\%, 47\%) |
| **Topiramate** | | | | |
| Coppola et al., 2002¹⁰ | Prospective add-on, median follow-up: 12 months | 3 | TPM | 18 patients: 3 seizure-free
10 had $>$50% reduction |
| Nieto-Barrera et al., 2000¹¹ | Prospective add-on, median follow-up: 10 months | 3 | TPM | 18 patients: 3 (16%) seizure-free
10 (55%) $>$50% reduction |
| Kroll-Seger et al., 2006²³ | Retrospective | 4 | TPM | 36 patients: 78% had $>$50% reduction in GTCS
17% seizure-free for at least 4 months |
| Dressler et al., 2015¹⁴ | Retrospective | 4 | TPM | 35% responders |
| **Bromides and zonisamide** | | | | |
| Oguni et al., 1994²⁷ | Add-on, mean follow-up: 19 months | 4 | Bromide | 22 patients: 8 (36%) $>$75% reduction
9 (41%) 50-75% reduction in GTCS at 3 months but only 8 responders at 12 months
Less effective for focal or myoclonic/absence seizures |
| Tanabe et al., 2008²⁶ | Retrospective questionnaire | 4 | Bromides, ZNS | 42% on bromides and 13.5% on ZNS had no status epilepticus |
| Lotte et al., 2012²⁵ | Retrospective, review of 32 patients | 4 | Bromides | After 3 months, 81% had $>$50% reduction
At 12 months, nearly half still had $>$50% reduction in seizure frequency |
| **Levetiracetam** | | | | |
| Striano et al., 2007²⁴ | Prospective, add-on, open-label, after 12-week evaluation period | 3 | LEV | 28 patients:
GTCS: 3 seizure-free and 15 with $>$50% reduction
Myoclonic: 2 seizure-free and 7 $>$50% reduction
Focal: 3 seizure-free and 3 $>$50% reduction
Absence: 1 seizure-free and 3 $>$50% reduction |
| **Fenfluramine** | | | | |
| Ceulemans et al., 2012²⁸ | Retrospective, add-on, mean follow-up: 6 years | 4 | Fenfluramine | 12 patients: 7 seizure-free for at least 1 year |
Since 2016...

ZX008 (Fenfluramine HCl Oral Solution) in Dravet Syndrome: Results of a Phase 3, Randomized, Double-Blind, Placebo-Controlled Trial

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

Original Article

Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel

Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome

A Phase 1b/2a Study to Examine the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of TAK-935 as an Adjunctive Therapy in Subjects with Developmental and/or Epileptic Encephalopathies (P5.266)

Behavioral Comorbidities and Drug Treatments in a Zebrafish scn1lab Model of Dravet Syndrome
Current consensus...

First Line
Valproic Acidb or Clobazamb
If first choice not effective, add the other

Second Line
Addition of Stiripentolbc
(used in combination with Valproic Acid and Clobazam)
or Topiramateb
or Ketogenic Dietb
\begin{itemize}
\item < 2 yrs of age: Traditional Ketogenic Diet
\item 2-12 yrs of age: Traditional or Modified Atkins Diet
\item >12 yrs: Modified Atkins Diet
\end{itemize}

Third Line
Addition of an AED:
\begin{itemize}
\item Clonazepamb
\item Levetiracetamb
\item Zonisamideb
\item Ethosuximidea (for atypical absence sz)
\item Phenobarbitala
\end{itemize}
or
Consider Vagus Nerve Stimulatora
with evaluation at a Comprehensive Epilepsy Center
First line therapies – what’s the evidence?

Efficacy and tolerability of the ketogenic diet in Dravet syndrome – Comparison with various standard antiepileptic drug regimen

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Responders at 3 months (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD</td>
<td>60</td>
</tr>
<tr>
<td>VNS</td>
<td>50</td>
</tr>
<tr>
<td>STP+ VPA+ CLB</td>
<td>70</td>
</tr>
<tr>
<td>Bromide</td>
<td>40</td>
</tr>
<tr>
<td>VPA alone</td>
<td>60</td>
</tr>
<tr>
<td>TPM</td>
<td>50</td>
</tr>
<tr>
<td>LEV</td>
<td>30</td>
</tr>
</tbody>
</table>

* VPA, TPM, VNS
**LEV

Retrospective
32 patients

Epilepsy Research (2015) 109, 81–89
Stiripentol

- Open Label (not just Dravet!) 1999
 - Single Blinded placebo controlled arm (n=88): 49% responders, 10% seizure free, 50% median reduction
 - Open Label (n=91): 68% responders, 19% seizure free; 74.5% median reduction
- Dravet, Double Blinded, Placebo, RCT (2000)
 - N=41; 71% responders
 - Valproic acid + clobazam – blinded 2 months, open for 1 month.
 - 71% responders, 69% mean reduction during blinded phase; 43% seizure free.
- Side effects: sleepiness, decreased appetite, ataxia.
Ketogenic diet and Dravet

- Nabbout, et al 2011 – prospective trial of KD+STP+VPA+CLB (+/- TPM and LEV); 15 subjects; 10/15 were 50% responders; 1 seizure free

- Caraballo et al 2011 – retrospective; 24 subjects; 16 (66.5%) remained on diet; 75% had a >75% decrease in seizures.

- Side effects: hyperlipidemia, renal stones, constipation, nausea/vomiting.
Topiramate

- Coppola et. Al (2002) – prospective, open label; 18 subjects; 10 subjects with 50% decrease, 3 subjects with 100% fewer seizures.
- Side effects: cognitive slowing, decreased appetite, acidosis, renal stones, hyperthermia
What’s missing from the 2nd line therapies list?
1857: Bromide approved as anti-convulsant

Possibly more effective for generalized tonic-clonic seizures; 37-77% subjects with >50% seizure reduction, all retrospective (1994-2012).

Side effects: rash, sleepiness, decreased appetite.
Previous strategies:
• Random phenotypic screening
• Structural variation of known AEDs
• Rational, target-based strategies
• Placebo-controlled
• Adjunctive (US) and Non-inferiority (EU; monotherapy)

Mechanisms of AEDs

Modulate GABA potentiation and inhibition of glutamate receptors.

Limitations of previous strategies

- Acute seizure models (MES/PTZ) do not “mirror” epilepsy and do not differentiate against drug-resistant seizures.
- Broad-spectrum drugs not more efficacious than narrow-spectrum drugs (i.e. VPA vs. CBZ).
- Broad-spectrum may not be suitable for different etiologies in difficult to control epilepsy.
- High placebo response rates (less so in MRE).
- Heterogeneity of epilepsy

Molecular pathway advances

Franz D, Capal J, Orphanet Journal of Rare Diseases 2017

Noebels J, Nature Neuroscience 2015

http://epilepsygenetics.net/2014/12/10/beyond-the-ion-channel-and-back/
Unmet needs of drug development

- Treatments of pharmacoresistant epilepsy
- Co-morbidities
- Epilepsy prevention

From the bench…

- Monogenetic etiology + animal model allows for comparison amongst existing compounds.
- Novel targets to modify disease development or progression.
Since 2016...

ZX008 (Fenfluramine HCl Oral Solution) in Dravet Syndrome: Results of a Phase 3, Randomized, Double-Blind, Placebo-Controlled Trial

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

Original Article

Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel

Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome

A Phase 1b/2a Study to Examine the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of TAK-935 as an Adjunctive Therapy in Subjects with Developmental and/or Epileptic Encephalopathies (P5.266)

Behavioral Comorbidities and Drug Treatments in a Zebrafish scn1lab Model of Dravet Syndrome
Randomized, placebo-controlled

1:1 placebo and cannabidiol 14 week treatment period.

Seizures tested: tonic, clonic, tonic-clonic, or atonic (convulsive seizures).

Quality of life scales:
- Caregiver global impression of change
- Epworth sleepiness scale
- Quality of Life in Childhood Epilepsy (QOLE)
- Vineland Adaptive Behavioral scales
Seizure-free = 3/60 subjects in the treatment group

Results – Devinsky, et. Al 2017

are shown in Table 3. The end point of a reduction in convulsive-seizure frequency by 50% or more during the treatment period occurred in 43% of the patients in the cannabidiol group and in 27% of the patients in the placebo group (odds ratio, 2.00; 95% CI, 0.93 to 4.30; P = 0.08).

Table 2. Primary Efficacy End Point of Percentage Change in Convulsive-Seizure Frequency in Each Trial Group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cannabidiol</th>
<th>Placebo</th>
<th>Adjusted Median Difference (95% CI)</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of convulsive seizures per mo — median (range)</td>
<td></td>
<td></td>
<td>percentage points</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>12.4 (3.9 to 1717)</td>
<td>14.9 (3.7 to 718)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment period</td>
<td>5.9 (0.0 to 2159)</td>
<td>14.1 (0.9 to 709)</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Percentage change in seizure frequency — median (range)</td>
<td>-38.9 (-100 to 337)</td>
<td>-13.3 (-91.5 to 230)</td>
<td>-22.8 (-41.1 to -5.4)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3. Summary of Secondary End-Point Results during the Treatment Period (Intention-to-Treat Analysis Set).

<table>
<thead>
<tr>
<th>End Point</th>
<th>Cannabidiol vs. Placebo</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change from baseline in other variables†††</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep-disruption score</td>
<td>-0.4 (-1.5 to 0.7)</td>
<td>0.45</td>
</tr>
<tr>
<td>Epworth Sleepiness Scale score</td>
<td>1.5 (-0.2 to 3.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>Quality of Life in Childhood Epilepsy score</td>
<td>1.5 (-3.8 to 6.8)</td>
<td>0.58</td>
</tr>
<tr>
<td>Vineland-II score</td>
<td>-2.6 (-5.8 to 1.6)</td>
<td>0.21</td>
</tr>
<tr>
<td>Inpatient hospitalizations due to epilepsy</td>
<td>0.0 (0.0 to 0.1)</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Side effects

Cannabidiol interactions

- Increase in levels of:
 - Topiramate
 - Rufinamide
 - N-desmethylclobazam
 - Adults – increase in Zonisamide and eslicarbazepine
 - Valproate and LFTs

Devinsky, et al. 2017
Gaston, et al. 2017
Fenfluramine hydrochloride – AES 2017

- Randomized, placebo-controlled
- 1:1:1 placebo and low and higher dose fenfluramine 14 week treatment period.
- Seizure frequency
- Echo (screen/treatment/post-treatment)
Fenfluramine hydrochloride – AES 2017

Figure 3. Percent reduction in mean monthly convulsive seizures for the ZX008 0.8 and 0.2 mg/kg/day groups compared with placebo group reduction during combined titration and maintenance periods.

- **Primary Endpoint**:
 - 0.8 mg/kg/day: 63.9% reduction with p=0.001
 - 0.2 mg/kg/day: 33.7% reduction with p=0.019

Figure 4. Median percent reduction from baseline in convulsive seizures per 28 days during combined titration and maintenance periods.

- 0.8 mg/kg/day: 72.4% reduction with p<0.001
- 0.2 mg/kg/day: 37.6% reduction with p=0.185
- Placebo: 17.4% reduction

Figure 7. Percentage of subjects who experienced seizure freedom or seizure during the combined titration and maintenance periods.

- ZX008 0.8 mg/kg/day: 17.5% seizure-free, 5.1% with 1 seizure
- ZX008 0.2 mg/kg/day: 7.5% seizure-free, 7.7% with 1 seizure
- Placebo: 7.5% seizure-free, 7.7% with 1 seizure

Seizure freedom was a prespecified secondary endpoint. Evaluation of 0 or 1 seizure was completed.
Fenfluramine hydrochloride – AES 2017

Cardiovascular Safety

- No valvulopathy
- Trace mitral regurgitation/Aortic Regurgitation in placebo/0.2/0.8: 12.5%, 17.9%, 22.5%
- Pulmonary hypertension – none
Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome

Zebrafish models identifies several compounds:
- Clemizole
- Trazodone
- Lorcaserin (prescribed to Dravet patients)

and generalized tonic-clonic (GTC) seizures, side effects and concurrent AEDs.

The clinical characteristics of Dravet syndrome children treated with Belviq® are summarized in Table 1. There were no deaths among the five Belviq®-treated patients, and Belviq® was well tolerated without serious adverse events causing cessation of therapy. During off-label Belviq® treatment, one patient was initially seizure-free for 3 weeks, one patient was seizure-free for 2 weeks, and a third patient had 1–2 seizure-free days per week. All five patients exhibited a reduction in the total number of seizures. Generalized tonic-clonic seizures were significantly reduced in Patients 1, 2 and 3. Indeed, Patient 2 experienced a 90% reduction in generalized tonic-clonic seizures with no need for rescue medications. Two patients remain on Belviq® with no increase in seizure frequency and, as expected, the most common side effect noted was a decreased appetite. One patient restarted medication a second time with interim improvement for a short period of time and then tapered off.
In process of study…

TAK935

- Inhibitor of Cholesterol 24 hydroxylase
- Phase 1a/2b adult epileptic encephalopathy study ongoing
- Pediatric Dravet/LGS study starting
- Efficacy results not released; safety data appears to be well-tolerated.

Asgharnejad, et. Al AAN 2018
Behavioral Comorbidities and Drug Treatments in a Zebrafish *scn1lab* Model of Dravet Syndrome

<table>
<thead>
<tr>
<th>Zebrafish Behavior</th>
<th>Human Behavior</th>
<th>Valproate</th>
<th>Clemizole/Diazepam</th>
<th>Trazodone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night locomotor activity</td>
<td>Sleep disturbance</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Time spent in open field</td>
<td>Anxiety</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Is it time for a new consensus?

- Approved or hopefully soon-to-be-approved therapies offer higher level data in which older 1st line therapies in addition to 2nd line therapies may be replaced.
- Looking forward to more published accounts of pivotal studies.
- How well do these medications work without valproic acid or clobazam.
- Open-label extensions important to see lasting effect of therapies.
- Therapies to address co-morbidities
Questions?

201-343-6676

esegal@epilepsygroup.com