Comorbidities of Rare Epilepsies: Results from the Rare Epilepsy Network

By |2018-10-13T12:47:18-05:00October 13th, 2018|Categories: DSF Research Review|Tags: , |

(Ho et al. 2018) The Rare Epilepsy Network (REN), a collaboration among more than 30 rare epilepsy patient groups including the Dravet Syndrome Foundation, released the first summary of data collected through their web-based, patient-reported database. 795 patients and caregivers participated, 106 of which were identified as Dravet syndrome, representing the 3rd largest group of [...]

A novel GABAergic dysfunction in human Dravet syndrome

By |2018-10-13T12:05:18-05:00October 13th, 2018|Categories: DSF Research Review|Tags: |

(Ruffolo et al. 2018) Gamma-aminobutyric acid (GABA) is a small compound that acts on different receptors in the brain such as GABAA and GABAB and is considered one of the main inhibitory neurotransmittors. Dysfunction of the GABAergic system is found in many neurological disorders, and although mutations in genes that code for subunits of GABA [...]

Evolution of Brain Glucose Metabolic Abnormalities in Children With Epilepsy and SCN1A Gene Variants.

By |2018-09-13T09:30:14-05:00September 13th, 2018|Categories: DSF Research Review|Tags: , |

(Kumar et al. 2018) Similar to the last study reviewed, the authors examined the fluorodeoxyglucose positron emission tomography (FDG-PET) scans of 3 patients with refractory epilepsy and SCN1A mutations. (Recall, FDG-PET scans provide images of the rate at which glucose is utilized by brain tissue.) However, in this study, the patients were imaged at least [...]

[18F]fluorodeoxyglucose-positron emission tomography study of genetically confirmed patients with Dravet syndrome.

By |2018-09-13T09:14:39-05:00September 13th, 2018|Categories: DSF Research Review|Tags: , |

(Haginoya et al. 2018) This study out of Japan examined the glucose uptake in the brain of 8 patients with Dravet syndrome, 4 of whom were three years or younger, and 4 of whom were 6 years and older. During the fluorodeoxyglucose positron emission tomography (FDG-PET) scan, the patients were injected with a chemically labeled [...]

Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death.

By |2018-08-31T16:39:43-05:00August 31st, 2018|Categories: DSF Research Review|Tags: , |

(Richards et al. 2018) SCN1A is primarily expressed in inhibitory interneurons in the brain. These cells counteract the excitatory neurons, so mutations in SCN1A disrupt inhibition, leading to too much excitation and seizures. An ideal treatment would be one that encourages the inhibitory neurons to work more efficiently without simultaneously increasing excitatory neuron function. Based on previous [...]

Channelopathy as a SUDEP Biomarker in Dravet Syndrome Patient-Derived Cardiac Myocytes

By |2018-08-31T15:28:47-05:00August 31st, 2018|Categories: DSF Research Review|Tags: , , |

(Frasier et al. 2018) It has long been known that SCN1A is expressed in heart cells as well as brain cells, and for several years scientists have hypothesized that the high rate of mortality in patients with Dravet syndrome could be due in part to some dysfunction in the heart caused by SCN1A mutations. The [...]

Mapt deletion fails to rescue premature lethality in two models of sodium channel epilepsy.

By |2018-09-13T09:20:48-05:00August 25th, 2018|Categories: DSF Research Review|

(Chen et al. 2018) Excessive buildup of  Tau, a protein that binds to microtubules in the brain, has been found in patients with Alzheimer's Disease, and specifically, in a mouse model of Alzheimer's with epilepsy. As such, finding ways to reduce the buildup of Tau has been the subject of research in epilepsy for the [...]

A transient developmental window of fast-spiking interneuron dysfunction in a mouse model of Dravet syndrome

By |2018-08-15T11:24:21-05:00August 15th, 2018|Categories: DSF Research Review|Tags: , , |

(Favero et al. 2018) Several years ago, researchers showed that Scn1a mutations in mice are primarily expressed in GABAergic interneurons, the inhibitory neurons that counteract excitatory neurons in the brain. A defect in these inhibitory neurons causes excess excitation, resulting in seizures and epilepsy in Dravet syndrome. However, that research was done primarily on brain [...]

Assessing the impact of caring for a child with Dravet syndrome: Results of a caregiver survey

By |2018-05-02T12:55:07-05:00May 2nd, 2018|Categories: DSF Research Review|Tags: , |

(Campbell JD, et al. 2018) This is the second part of the survey described in the last review, in which 30 caregivers of patients with Dravet syndrome treated at Children's Hospital Colorado responded to questions regarding the impact of caring for their patients. In this part, the authors describe anxiety/depression and discomfort/pain as the greatest [...]

The direct and indirect costs of Dravet Syndrome

By |2018-05-02T10:24:39-05:00May 2nd, 2018|Categories: DSF Research Review|Tags: , |

(Whittington MD, et al. 2018) The authors sent out an online survey to 60 caregivers whose patients with Dravet syndrome were treated at Children's Hospital Colorado. The survey asked in-depth questions about how caring for an individual with Dravet syndrome has affected their family and work experience, and 34 caregivers responded. The average direct health [...]